Importance of IAGOS to the Global Observing System for the atmospheric composition

Oksana Tarasova WMO Research Department

WMO OMM

World Meteorological Organization Organisation météorologique mondiale

Global Atmosphere Watch Programme

- maintaining and applying long-term systematic observations of the chemical composition and related physical characteristics of the atmosphere,
- emphasizing quality assurance and quality control,
- delivering integrated **products and services** related to atmospheric composition of relevance to users.

GAW builds on partnerships involving contributors from **100** countries (*including many contributions from research community*)

Elements covered in the GAW Implementation Plan

- Observations
- Quality assurance
- Data management
- Modeling
- Joint research
- Capacity building
- Outreach and communications

Promote a "research value chain" from observations to services

Observations in GAW

GAW observational network comprises:

- Global stations (31)
- Regional stations
- Local stations
- Mobile platform
- Contributing networks (10)

Continue to improve observational systems and data using RRR and WIGOS/WIS (WMO Integrated Global Observing System and WMO Information System) to evolve the observing system for atmospheric composition to support the growing services to:

- allow near real-time provision of GAW data,
- support integration of surface, vertical profile and column datasets from different platforms to provide a unified understanding of aerosol and gas distributions,
- minimize gaps in the measurement networks in data-poor regions.

IAGOS is recognized as a GAW contributing network

How to get vertical component?

- Sondes
- Aircraft
- •Remote sensing from the ground
- •Satellite remote sensing

VMO OMM

A tiered strategy for monitoring methane leaks in the US

Tier2 (Blue boxes):
Kern River oil field

Aircraft
spectrometers

estimates local
of

fluxes & attributes
of

source sectors
Bakersteet

Elk Hills oil field
of

in the sector of the secto

Enhanced Activity Data

Tier 4 (not shown): Surface observations 50 km Tier 3: Plume Imaging aircraft map point sources Source 27A Pixel size 1.5m 500 m

How to put all components together (QA/AC)

GAW Quality Assurance Framework

- Network-wide one reference standard
- Full traceability to the primary standard
- The definition of data quality objectives (DQOs)
- Established guidelines on how to meet the quality targets

TCCON traceability approach

Examples of the applications in GAW

- Support of international conventions: stratospheric ozone, IG³IS
- *Ecosystem services*: analysis of total deposition, nitrogen cycle, deposition to the oceans/marine geoengineering
- *Health:* air quality including sand and dust storms and biomass burning contributions, urban air quality (GURME)
- Food security: atmospheric composition and agriculture
- *Transport security*: volcanic ash forecasting

IAGOS for air quality forecasting

NRT data are needed for forecast verification or for the direct assimilation in the models

Near-real-time Ozone and Carbon Monoxide forecasts

Surface ozone and carbon monoxide from the near-real-time analysis/forecast system are routinely verified against data from some of the WMO GAW stations.

Near-real-time evaluation using IAGOS data

O₃ and CO from the CAMS NRT models as well as the MACC reanalysis are validated with profiles from IAGOS/MOZAIC aircrafts. Time-series of the difference between model and observations are presented for each available year, along with profiles at individual airports, and the observed climatologies.

IAGOS for atmospheric processes studies

Improvement of the parametrization of transport processes (convection, mixing, stratospheretroposphere exchange) in global CTMs

MO OMM

A. Wahner et al., GEO-workshop 8.10.2009

IAGOS for pollution source attribution

From B. Sauvage et al. (ACP, 2017): Figure 6. (a) Carbon monoxide zonal profile during the 10 March 2002 MOZAIC–IAGOS flight from Frankfurt to Denver.

Conclusions

- IAGOS provides the unique observational data for an important part of the atmosphere where measurements are impossible or impractical by the other means
- IAGOS observations follow international standards concerning quality of observations which allows for their easy integration with the other observations (in GAW) and ensures high quality of the measurements
- IAGOS data are used in multiple applications from direct studies of the atmospheric processes to source attribution and validations of predictive models and satellite observations

Thank you Merci

WMO OMM

World Meteorological Organization Organisation météorologique mondiale

WEATHER CLIMATE WATER TEMPS CLIMAT EAU