

In-Service Aircraft for a Global Observing System

Measurement of Nitrogen Oxides on IAGOS

Instrument Characterization, First Observations

and Future Developments

WHY ARE NITROGEN OXIDES IMPORTANT ?

Chemiluminescence (CL) is the emission of light with limited emission of heat (luminescence), as the result of a chemical reaction.

This definition excludes flames where radiation is emitted as a result of exothermic high-temperature chemical reactions.

Oxidation of NO to NO_2 , small part of NO_2 goes into the excited state: NO_2^*

- (1) $NO + O_3 \rightarrow NO_2 + O_2$
- (2) $NO + O_3 \rightarrow NO_2^* + O_2$

Relaxation of NO^{*}₂ into the ground state via

(3) $NO_2^* \rightarrow NO_2 + hv$ emission of radiation ($\lambda = 0.59 - 2.8 \mu m$) (4) $NO_2^* + M \rightarrow NO_2 + M$ quenching by collision with M (N_2, O_2)

NO direct measurement by CL after reaction with O₃.

NO₂ measured by CL after specific conversion to NO via photolytic reaction.

Photolytic conversion in BLC $NO_2 + hv \rightarrow NO + O$ ($\lambda = 395$ nm)

Detection of NO by CL

 $NO_{2}^{*} \rightarrow NO_{2} + hv$ ($\lambda = 0.59 - 2.8 \,\mu m$)

Sequential measurement of NO (BLC UV off) and NO_x (BLC UV on)

Measuring Mode: Zero Mode:

Background Mode:

Ambient NO/NO_x is measured by reaction with O_3 About 98% of ambient NO/NO_x is oxidized in the pre-volume to determine the background signals from other chemical reactions Background signal of gas supply is determined

Functional Units

- 1) Data Acquisition System
- 2) Oxygen Distribution (O2D)
- 3) Converter and Calibration (ICC)
- 4) NO Detector (NOD)
- 5) Ozone Generator (O3G)
- 6) Vacum Pump (VAC)

Source: Berkes et al., in press, AMT 2018

Different modes of the instrument:

ambient air: measuring modes (MM) are shown for NO (BLC off) and NOc (BLC on) zero air modes (ZM) are shown for NO (BLC off) and for NOc (BLC on).

Specifications

LOD = 2/(S × CE)
$$\sqrt{\left(\frac{BG_{MM}}{t}\right)^2 + \left(\frac{BG_{NM}}{t}\right)^2}$$

S = sensitivity in cts/ppb CE = conversion efficiency BG_MM = background signal measurement mode BG_NM = background signal zero mode

IAGOS (Berkes et al., 2018)

- NO 24 pptv (2-sigma, 4s)
- NO₂ 35 pptv (2-sigma, 4s)

CARIBIC (Stratmann et al., 2016)

NO 7 pptvl (2-sigma,1s)

NOXAR: (Brunner et al., 2000)

- NO 23 pptv (1-sigma, 2s)
- NO₂ 45 pptv (1-sigma, 2s)

IAGOS CL Instrument

Sample flow rate	150 sccm
Inlet flow rate	1.5 SLM
Zero-air flow rate	250 sccm
O ₂ consumption	~60L/Flight
Weight	29 kg
Size	560x300x280 mm
Detection limit	NO = 21 ppt, NO ₂ = 27 ppt

INSTRUMENT INTERCOMPARISON

Two days of ambient NO and NO_2 measurements at DWD Hohenpeissenberg Observatory in October 2016 during the ACTRIC s-b-s NO_x intercomparison. The reference instrument (REF) was regularly calibrated during the campaign.

NO AND NO₂ MIXING RATIOS AT NIGHT

Night:NO + VOC, $HO_2 \rightarrow NO_2 + products$ Day: $NO_2 + sunlight \rightarrow NO + O$

NO AND **NO**₂ VERTICAL PROFILES

Vertical distribution of NO and NO₂ at day time for NO (left) and NO₂ (right) over Düsseldorf airport in summer (JJA) 2015. Note the different x-axis-scale.

NO₂ DETECTION BY OPTICAL MEANS

Cavity-Attenuated Phase Shift (CAPS) Technique

Method similar to cavity ring-down spectroscopy

- Light Source
- High Reflectivity Optical Cell
- Detector

LED (blue) Pathlength: ~2 km Vacuum Photodiode

Kebabian et al., Rev. Sci. Instrum., 78, 063102 (2007)

Cavity-Attenuated Phase Shift (CAPS) Technique

NO₂ data from CAPS and CLD/BLC in ambient air at DWD Observatory Hohenpeissenberg, Nov. 2012 (gaw_brief_059)

IAGOS AIR QUALITY PACKAGE

- Combines the measurement of NO₂, aerosol light extinction, and aerosol size distribution as proxy for aerosol mass.
- Allows measurement of regular profiles of key air quality parameters.