

Atmosphere Monitoring

The contribution of IAGOS to the Copernicus Atmosphere Monitoring Service

Henk Eskes, KNMI

EU Copernicus programme

ESA UNCLASSIFIED - For Official Use

CAMS: From observations to information

Atmosphere Monitoring

 \mathcal{A}

CAMS co-ordinated by ECMWF

Ozone and precursors
Aerosol
Greenhouse gases

44

Atmosphere Monitoring

CAMS Catalogue

*

ABOUT CAMS **NEWS & MEDIA**

EVENTS CATALOGUE

RESOURCES TENDERS

USER SUPPORT

Back to index

Global forecasts of assimilated chemical species ozone

GetCapabilites Verification results Data download Validation reports Plots

This service provides daily forecasts up to 5 days of chemical species that are directly constrained by observations

Theme: Air quality and atmospheric composition, Ozone and Ultraviolet radiation Product family: Global forecasts Parameter: Ozone

Geographical area: (-180, 180, -90, 90)

Time coverage:

Metadata: XML

Aerosol

Ozone

-

	SO2	
L.,		-

CO2 CH4

Species, vertical range	Assimilation	Validation	
Aerosol, optical properties	MODIS Aqua/Terra AOD PMAp AOD	AOD, Ångström: AERONET, GAW, Skynet, MISR, OMI, lidar, ceilometer	
Aerosol mass PM10, PM2.5)	MODIS Aqua/Terra	European AirBase stations	
D ₃ , stratosphere	MLS, GOME-2A, GOME-2B, OMI, SBUV-2, OMPS	Sonde, lidar, MWR, FTIR, OMPS, ACE-FTS, OSIRIS, BASCOE and MSR analyses	
D₃, JT/LS	MLS	IAGOS, ozone sonde	
D ₃ , Tree troposphere	Indirectly constrained by limb and nadir sounders	IAGOS, ozone sonde	
D ₃ , PBL / surface	-	Surface ozone: WMO/GAW, NOAA/ESRL- GMD, AIRBASE	
CO, JT/LS	IASI, MOPITT	IAGOS	
CO, Tree troposphere	IASI, MOPITT	IAGOS, MOPITT, IASI, TCCON	
CO, PBL / surface	IASI, MOPITT	Surface CO: WMO/GAW, NOAA/ESRL	
NO ₂ , roposphere	OMI, partially constrained due to short lifetime	SCIAMACHY, GOME-2, MAX-DOAS	
ЧСНО	-	GOME-2, MAX-DOAS	
50 ₂	GOME-2A, GOME-2B (Volcanic eruptions)	-	
Stratosphere, other than O ₃	-	NO ₂ column only: SCIAMACHY, GOME-2	
CO ₂ , surface, PBL		ICOS	
CO ₂ , column		TCCON	
CH ₄ , surface, PBL		ICOS	
CH ₄ , column		TCCON	

UT/LS Free trop PBL, surface

Aerosol

Ozone

-

SO2

Species, vertical range	Assimilation	Validation
Aerosol, optical properties	MODIS Aqua/Terra AOD PMAp AOD	AOD, Ångström: AERONET, GAW, Skynet, MISR, OMI, lidar, ceilometer
Aerosol mass (PM10, PM2.5)	MODIS Aqua/Terra	European AirBase stations
D₃, stratosphere	MLS, GOME-2A, GOME-2B, OMI, SBUV-2, OMPS	Sonde, lidar, MWR, FTIR, OMPS, ACE-FTS, OSIRIS, BASCOE and MSR analyses
⊃₃, UT/LS	MLS	IAGOS, ozone sonde
O₃, free troposphere	Indirectly constrained by limb and nadir sounders	IAGOS, ozone sonde
O₃, PBL / surface	-	Surface ozone: WMO/GAW, NOAA/ESRL- GMD, AIRBASE
CO, UT/LS	IASI, MOPITT	IAGOS
CO, free troposphere	IASI, MOPITT	IAGOS, MOPITT, IASI, TCCON
CO, PBL / surface	IASI, MOPITT	Surface CO: WMO/GAW, NOAA/ESRL
NO ₂ , troposphere	OMI, partially constrained due to short lifetime	SCIAMACHY, GOME-2, MAX-DOAS
НСНО	-	GOME-2, MAX-DOAS
50 ₂	GOME-2A, GOME-2B (Volcanic eruptions)	-
Stratosphere, other than O_3	-	NO ₂ column only: SCIAMACHY, GOME-2
CO ₂ , surface, PBL		ICOS
CO ₂ , column		TCCON
CH ₄ , surface, PBL		ICOS
CH ₄ , column		TCCON

UT/LS Free trop PBL, surface

The evaluation of the global NRT system

Atmosphere Monitoring

Global CAMS forecast validation report:

- Published every 3 months
- Last available report DJF 2018 (published 1 June 2018)

Why 3-monthly ?

- The CAMS analysis/forecast system is evolving, about 2 updates / yr
- Up-to-date validation results

Approach

Compare o-suite and control run against independent observations

Validation report of the CAMS near-real time global atmospheric composition service

September-November 2016

Issued by: KNMI / Henk Eskes Date: 25/02/2017 Ref: CAMS84_2015SC2_D84.1.1.6_2016SON_v1

Atmosphere Monitoring

AP

ring	imeliness	Real Real-Time < 2-3 hours	Near-Real-Time < 2-3 days	A posteriori < 1 month	Final < 1 year
	QC/QA T	Automated Filtering, flagging	Semi-automated	Manual, Expertise Semi-validated	Expertise+ Validated
	CAMS products	<section-header></section-header>	<text><text></text></text>	<section-header></section-header>	Re-analyses (Validation)

Copernicus Grant Agreement nº6330

Atmosphere Monitoring

Importance of IAGOS for CAMS validation:

Vertical profile information

Atmosphere Monitoring

Importance of IAGOS for CAMS validation:

Vertical profile information

Operational, with real-time data delivery,
 Coverage: Multiple airplanes, multiple profiles per day

IAGOS coverage

Atmosphere Monitoring

 \mathcal{P}

510 flights in 3 months time (DJF 2018 report)

The evaluation of the global NRT system

Atmosphere Monitoring

510 flights in 3 months time (DJF 2018 report)

Atmosphere Monitoring

Importance of IAGOS for CAMS validation:

- Vertical profile information
- Operational, with real-time data delivery, Multiple airplanes, multiple profiles per day, coverage
- Flights to/from Europe: evaluation regional AQ models

The evaluation of the CAMS regional models

 \mathcal{A}

250

European

MNMB BL

Commission

z (m a.s.l.)

IAGOS

Atmosphere Monitoring

Importance of IAGOS for CAMS validation:

- Vertical profile information
- Operational, with real-time data delivery, Multiple airplanes, multiple profiles per day, coverage
- Flights to/from Europe: evaluation regional AQ models
- Long time series: MOZAIC-IAGOS-CARIBIC
 Evaluation of the CAMS reanalysis

CAMS reanalysis vs IAGOS

Atmosphere Monitoring

44

Atmosphere Monitoring

Importance of IAGOS for CAMS validation:

- Vertical profile information
- Operational, with real-time data delivery, Multiple airplanes, multiple profiles per day, coverage
- Flights to/from Europe:
 evaluation regional AQ models
- Long time series: MOZAIC-IAGOS-CARIBIC Evaluation of the CAMS reanalysis
- CO, ozone are key species targeted by CAMS Extensions to CO2, CH4, H2O, NOx, aerosol

IAGOS NO/NO2

Atmosphere Monitoring

47

The IAGOS NO_x Instrument – Design, Operation and First Results from Deployment aboard Passenger Aircraft

Florian Berkes¹, Norbert Houben¹, Ulrich Bundke¹, Harald Franke², Hans-Werner Pätz¹, Franz Rohrer¹, Andreas Wahner¹, and Andreas Petzold¹

Figure 13: Statistical vertical distribution of NO and NO₂ (only at day time) of a,c) for NO and b,d) NO₂ over Düsseldorf airport in summer (JJA) 2015. Note the different x-axis-scale.

The CAMS validation team

Atmosphere Monitoring

Persons involved in CAMS validation

- Y. Bennouna (CNRS-LA), H. Clark (CNRS-LA), V. Thouret (CNRS-LA),
- S. Basart (BSC), A. Benedictow (MetNo), A. Blechschmidt (IUP-UB),
- S. Chabrillat (BIRA-IASB), Y. Christophe (BIRA-IASB),
- E. Cuevas (AEMET), H. Flentje (DWD), K. M. Hansen (AU), U. Im (AU),
- J. Griesfeller (MetNo), V. Huijnen (KNMI), J. Kapsomenakis (AA),
- E. Katragkou (AUTH), B. Langerock (BIRA-IASB), K. Petersen (MPG), M. Ramonet (CEA-LSCE),
- M. Razinger (ECMWF), A. Richter (IUP-UB), M. Schulz (MetNo),
- N. Sudarchikova (MPG), W. Thomas (DWD), V. Thouret (CNRS-LA),
- M. Vrekoussis (AA), A. Wagner (MPG), T. Warneke (UBC), C. Zerefos (AA)

