GEWEX Process Evaluation Study

on Upper Tropospheric Clouds & Convection

GEWEX UTCC PROES

advance understanding on feedback of UT clouds

large-scale modelling necessary to identify most influential feedback mechanisms
-> models should be in agreement with observations

- understand relation between convection, cirrus anvils & radiative heating
- provide observational metrics to probe process understanding

Claudia Stubenrauch

Laboratoire de Météorologie Dynamique / IPSL, France

GEWEX Data and Assessment Panel meeting 9 – 12 Oct 2017, Boulder, USA

GEWEX UTCC PROES participants

Coordination: Claudia Stubenrauch & Graeme Stephens

working group links communities from

observations, radiative transfer, transport, process & climate modelling

Observations / radiative transfer:

- G. Stephens, H. Takahashi (NASA JPL), C. Stubenrauch, S. Protopapadaki, G. Sèze (LMD),
- J. Luo, W. B. Rossow (CUNY), H. Masunaga (Nagoya Univ.), Roca (LEGOS), D. Bouniol (CNRM),
- T. L'Ecuyer (Uni Wisconsin), S. Kato (NASA Langley), C. Schumacher (Texas Univ),
- G. Mace, E. Zipser (Utah Univ), E. Jensen (NASA Ames), M. Krämer (FZ Jülich), A. Baran (MetOffice),
- C. Kummerow (CSU), B. J. Sohn (Seoul Univ), H. Okamoto (Kyushu Univ)

Lagrangian transport, UTLS cirrus:

B. Legras, A.-S. Tissier, A. Hertzog (LMD)

Small scale process modelling:

S. van den Heever (CSU), R. Storer (NASA JPL), R. Plougonven, C. Muller (LMD),

W.-T. Chen (Nat Taiwan Univ), B. Kärcher (DLR)

Climate modelling:

T. Del Genio, G. Elsaesser (GISS), R. Ramaswamy, L. Donner (GFDL), B. Gasparini (ETHZ), U. Burkhardt (DLR), T. Mauritsen (MPI), M. Bonazzola, J.-B. Madeleine, C. Rio, C. Risi, S. Bony (LMD), R. Roehrig (CNRM)

GEWEX UTCC PROES highlights 2017

> 2nd GEWEX UTCC PROES meeting

hosted by Johnny Luo, at City College, University of New York, 28 – 29 March 2017 vivid discussions about synergies & cooperations (funding dependent): data, CRM studies & climate model parameterizations

- article in GEWEX Newsletter May 2017
- > AGU session, convened by H. Takahashi, R. Storer
- **build UTCC PROES website,** in cooperation with French data centre AERIS goals, talks of the meetings, references

UTCC PROES Strategy

meetings: Nov 2015, Apr 2016, Mar 2017
working group links communities from observations, radiative transfer, transport, process & climate modelling

focus on tropical convective systems & cirrus originating from large-scale forcing

- \succ cloud system approach, anchored on IR sounder data horizontal extent & convective cores/cirrus anvil/thin cirrus based on p_{cld} ε_{cld}
- > explore relationships between 'proxies' of convective strength & anvils
- build synergetic data (vert. dimension, atmosph. environment, temporal res.)
- determine heating rates of different parts of UT cloud systems
- > follow snapshots by Lagrangian transfer -> evolution & feedbacks
- > investigate how cloud systems behave in CRM studies

& in GCM simulations (under different parameterizations of convection/detrainment/microphysics)

IR Sounders to derive UT cloud properties

TOVS, ATOVS

>1979 / ≥ 1995: 7:30/ 1:30 AM/PM

AIRS, CrIS

≥2002 / ≥ 2012 : 1:30 AM/PM

IASI (1,2,3), IASI-NG

≥2006 / ≥ 2012 / ≥ 2020 : 9:30 AM/PM

➤ long time series & good areal coverage

>good IR spectral resolution -> sensitive to cirrusday & night, COD > 0.2, also above low clouds

UT cloud amount

CIRS (Cloud retrieval from IR Sounders):

Stubenrauch et al., J. Clim. 1999, 2006; ACP 2010, ACP 2017

AIRS / IASI climatologies -> French data centre AERIS

HIRS climatology -> EUMETSAT CM-SAF (DWD)

from GEWEX Cloud Assessment Database http://climserv.ipsl.polytechnique.fr/gewexca

From cloud retrieval to cloud systems

clouds are extended objects, driven by dynamics -> organized systems

Method: 1) group adjacent grid boxes with high clouds of similar height (p_{cld})

fill data gaps using PDF method

build UT cloud systems

2) use ε_{cld} to distinguish convective core, thick cirrus, thin cirrus

30N-30S: UT cloud systems cover 20%, those without convective core 5% 50% of these originate from convection (Luo & Rossow 2004, Riihimaki et al. 2012)

Observation synergies

horizontal emissivity structure of UT cloud systems compared to other studies, IR sounders add thin cirrus $(0.1 < \varepsilon_{cld} < 0.5)$

vertical structure from radar-lidar: radar reflectivity of convective system

A-Train synergy (1h30 AM / PM)

AIRS – CALIPSO – CloudSat – AMSR-E

microwave imager - IR sounder synergy: definition of convective core : $\varepsilon_{cld} > 0.98$

Goal: relate anvil properties to convective strength

Strategy: need proxies

> to identify convective cores

to identify mature convective systems

to describe convective strength

(Machado & Rossow 1993)

vertical updraft: CloudSat Echo Top Height / TRMM

/ conv mass transport (Takahashi & Luo 2014 Liu & Zipser 2007, Mullendore et al. 2008)

LNB : soundings / max mass flux outflow (Takahashi & Luo 2012)

heavy rain area: CloudSat-AMSR-E-MODIS (Yuan & Houze 2010)

core width : CloudSat (Igel et al. 2014)

mass flux: ERA-Interim + Lagrangian approch (Tissier et al. 2016)

A-Train + 1D cld model (Masunaga & Luo 2016)

convective strength <-> cloud system properties

cloud system size / max rain rate increase with convective strength, but land – ocean differences

mature single convective core systems

Protopapadaki et al. 2017

NW tropical Pacific 18 235 K 210 K 210 K LNB 14.4 km 20 dBZ 12.0 km 125 Height (km) 235 K Updraft 20-40 m/s Cloud outline_ Updraft 40 dBZ 7.0 km 5-15 m/s Cloud outline 273 K 273 20 dBZ 20 dBZ outline 40 dBZ

larger updraft & CC, smaller systems less entrainment

smaller updraft & CC, larger systems stronger entrainment Takahashi et al. 2017

land -ocean convective entrainment

Takahashi et al. 2017

LNB from sounding: max height (no air mass interaction)

convective entrainment affects buoyancy

convective cloud objects from 5-yr CloudSat statistics *Takahashi & Luo 2012*

- Warm Pool more diluted than tropical land regions
- higher LNB(max mass outflow) associated with moister midtroposphere (reduced entrainment dilution) & smaller systems
- > Tropical continental systems less entrainment => more intense convective cores

convective entrainment & vertical velocity

Masunaga & Luo 2016

Entraining ambient air will slow down convective updraft

single column plume model

Plume entrainment rates from 0 km⁻¹ to 0.4 km⁻¹

increasing entrainment leads to smaller climate sensitivity (Zhao et al. 2014, Sanderson et al. 2010) mechanisms not yet understood

L. Donner UTCC PROES meeting 2017

convective strength -> anvil properties

Life cycle of deep convective cloud systems

max of convection over land / ocean : 16-18h / early morning problem: most polar sunsynchroneous observations do not catch this

-> use good time resolution of geostationary satellite imagers

& track cold convective cores with $T_B^{\ IR}$; however $T_B^{\ IR}$ depends on T_{cld} & on E_{cld}

track all cold clouds (T_B^{IR} < 245K), sufficiently large (> 45 km) with \geq 1 convective cloud (< 218 K)

coldest systems reach longest life-times

-> synergy AIRS/IASI + geostationary satellite imagers (for ex. HIMAWARI, G. Sèze)

Synergy with TRMM to analyze system life evolution

1.2 0.8

0.4

-0.8-1.2

Composite observations w. r. t. convective life stages

H. Masunaga
UTCC PROES meeting 2017

Masunaga, 2012, 2013 Masunaga & L'Ecuyer 2014

Evolution of moisture & cloud structures in organized convection

well defined convective cloud column at time of precipitation & then thinning out, but cirrus also around before convection Radiative impact on convection?

seminar at CSU

convective - anvil heating

latent (LH) — radiative (RH)

Schumacher et al. 2004

Stratiform

Deep convective

Shallow convective

Latent heating (K/day)

-2

latent heating from TRMM : column precipitation & cloud profile

C. Schumacher UTCC PROES meeting 2017

tropical stratiform rain leads to high peak in heating & cooling below deep convective rain leads to broad atmospheric warming

Sensitivities of TRMM & CloudSat radar

TRMM radar misses 5 km to cloud top & factor of 5 in horizontal extent

TRMM LH – ISCCP RH synergy

Li et al. 2013

Li & Schumacher 2010

total radiative heating enhances gradient of latent heating at upper levels (e.g., 250 mb), esp. over Africa, Maritime Continent & South America & enhances overall LH by ~20%

heating rates of UT cloud systems (1)

critical to feedbacks: cirrus radiative heating in upper troposphere

➤ Cirrus anvils might regulate convection as they stabilize the atmospheric column by their heating (Stephens et al. 2008, Lebsock et al. 2010)

tropical convective regions: > 50% of total heating UT heating due to cirrus (Sohn 1999) -> widespread impact on large-scale tropical atmospheric circulation

Heating will be affected by:

- areal coverage
 emissivity distribution
- vertical structure of cirrus anvils (layering & microphysics)

use nadir track info on vertical structure to propagate properties across UT cloud systems

- 1) assess existing radiative heating rates
- 2) sort FLXHR-LIDAR heating rates ...
- 3) compute heating rates ...

by categorizing **cloud types** wrt ε_{cld} & vertical structure by categorizing **atmospheric situation** wrt T & H₂O profiles

Challenges:

- IWP, vertical profile of IWC
- ice crystal habit, size distribution -> SSP
- retrieval uncertainties in IWC / De profiles
- multiple cloud layering

Glance on actual heating rates

Reanalysis cloud heating rates disagree over convective regions, esp. over Asian monsoon region

Tissier & Legras ACP 2016

Obs. cloud heating rates disagree:

Johansson et al. 2015 (FLX-LIDAR)

-> warming above clr sky LZRH

Yang et al. 2016 (CALIPSO)

-> cooling above 16km

B. Legras, UTCC PROES meeting 29 Apr 2016, Paris

heating rates of UT cloud systems (3)

2) categorize Lidar-CloudSat FLXHR heating rates wrt to ϵ_{cld} , ρ_{cld} , vert. layering, thermodyn.

tropics, AIRS p_{cld} < 200 hPa, nadir track statistics preliminary T_{surf} > 300K --- sw T_{surf} < 300K *** sw 17500 15000 15000 12500 12500 10000 10000 net net net: LW net: **LW** 7500 7500 thin Ci **SW** thin Ci **SW** Ci 5000 Ci 5000 Cb Cb 2500 2500 $3 \, \epsilon_{cld}$ categories all clouds 3 ϵ_{cld} categories all clouds K/day

warmer T_{surf} -> UT cloud net heating occuring in thicker layers

heating rates of UT cloud systems (4)

AIRS UT cloud systems collocated to Lidar-CloudSat FLXHR heating rates wrt to ϵ_{cld} , ρ_{cld} ,

AIRS p_{cld} : 330 - 440 hPa p_{cld} : 200 - 330 hPa p_{cld} : 86 - 200 hPa nadir track statistics preliminary

LW heating cloud – clear sky convective core
Ci anvil
thin Ci anvil

K/day

clear distinction of heating associated with each category

Next steps:

- refine categories, wrt atmospheric environment (meteorological reanalysis ERA5)
- expand heating rates across UT cloud systems

Characteristics of deep convection from CRM simulations

S. van den Heever, UTCC PROES meeting March 2017

advance our understanding of environmental impacts on horizontal & vertical scales of tropical deep convection; convective anvil dynamic & radiative feedbacks

increasing SST -> increased PW, convective intensity (w) & high cloud fraction, decrease in IR cooling -> slowing radiatively driven circulation

Challenge to simulate (organized) convection

Figure 2. Schematic diagram of the precipitation mechanisms in a tropical cloud system. Solid arrows indicate particle trajectories (adapted from Houze 1989).

GISS GCM

Cold pools (*Del Genio et al. 2015*) Convective ice parameterization (*Elsaesser et al. 2017*) Microphysics (*Morrison, Gettelman 2015*)

need to simulate entire convective life cycle...

Convection & UT clouds in LMDZ climate model

convection

C. Rio **UTCC PROES** meeting 2015

Deep convection and associated cold pools Emanuel, JAS, 1991 revisited by Grandpeix et Lafore, JAS, 2010

(1) Formed by large-scale advection and deep convection (anvils); in this latter case they

depend on the detrainment of water vapor and maximum precipitation efficiency ϵ_{\max}

[Emanuel & Živković-Rothman 1999; Bony & Emanuel 2001; Rio et al. 2012; Grandpeix & Lafore 2010]

(2) Phase based on temperature using $x_{liq} =$

(3) Precipitation mass flux $(\rho w_{iw}q_{iw})$ computed using ice particle fall velocity

 $w_{iw}=\gamma_{iw}w_0$ with $w_0=3.29(
ho q_{iw})^{0.16}$ and γ_{iw} a tuning coefficient

[Zender and Kiehl, 1997; Heymsfield and Donner, 1990]

UT clouds

J.-B. Madeleine **UTCC PROES** meeting 2015

Diagnostics for UT cloud assessment in climate models

M. Bonazzola, C. Stubenrauch, S. Protopapadaki

analyze GCM clouds as seen from AIRS/IASI, via simulator & construct UT cloud systems

-> evaluation of GCM convection schemes / detrainment / microphysics allows to assess horizontal extent & emissivity structure of UT cloud systems

observational metrics to probe process understanding

How do the anvil properties change with convective strength?

- LMDZ cloud system size increases with convective strength LMDZ cloud system size increases stronger than obs, including ISS leads to smaller systems, in better agreement to obs
- ➤ thin Ci over anvil area increases with convective strength
 thin Ci over anvil area much too small for LMDZ and no correlation between 205-215K
 reducing the fall speed (longer life time of cirrus) leads to an increase with convective strength

Summary & Outlook

working group (meetings: Nov 2015, Apr 2016, Mar 2017 -> vivid discussions) cooperations being formed (depending on funding), focus on tropical convective systems

- > synergetic cloud system data based on IR sounder data powerful tool to study relation between convection & anvil properties
- relation between convective strength & anvil properties: change in emissivity structure -> can be used to constrain models
- classification of vertical structure & heating rates (A-Train synergy)
 - -> extend to UT cloud systems & integrate into feedback studies using Lagrangian transport & advanced analysis methods
- investigate how cloud systems behave in CRM studies
 - & in GCM simulations (under different parameterizations of convection/detrainment/microphysics)
- assessment of heating rates?

next meeting: autumn 2018 (Paris)